
tions
Programming With the Intel
MMX™ Technology 32

The Intel MMX technology comprises a set of extensions to the Intel Architecture that are designed
to greatly enhance the performance of advanced media and communications applications. These
extensions (which include new registers, data types, and instructions) are combined with a single-
instruction, multiple-data (SIMD) execution model to accelerate the performance of applications
such as motion video, combined graphics with video, image processing, audio synthesis, speech
synthesis and compression, telephony, video conferencing, and 2D and 3D graphics, which
typically use compute-intensive algorithms to perform repetitive operations on large arrays of
simple, native data elements.

The MMX technology defines a simple and flexible software model, with no new mode or
operating-system visible state. All existing software will continue to run correctly, without
modification, on Intel Architecture processors that incorporate the MMX technology, even in the
presence of existing and new applications that incorporate this technology.

The following sections of this chapter describe the MMX technology’s basic programming
environment, including the MMX register set, data types, and instruction set. Detailed descrip
of the MMX instructions are provided in Chapter 3, Instruction Set Reference, of the Intel
Architecture Software Developer’s Manual, Volume 2. The manner in which the MMX technology
is integrated into the Intel Architecture system programming model is described in Chapter 10,
MMX™ Technology System Programming Model, in the Intel Architecture Software Developer’s
Manual, Volume 3.

32.1 Overview of the MMX™ Technology Programming
Environment

MMX technology provides the following new extensions to the Intel Architecture programming
environment.

• Eight MMX™ registers (MM0 through MM7).

• Four MMX data types (packed bytes, packed words, packed doublewords, and quadword).

• The MMX instruction set.

The MMX registers and data types are described in the following sections. See “Overview of the
MMX™ Instruction Set”, for an overview of the MMX instructions.

32.1.1 MMX™ Registers

The MMX register set consists of eight 64-bit registers (see Figure 32-1). The MMX instructions
access the MMX registers directly using the register names MM0 through MM7. These registers
can only be used to perform calculations on MMX data types; they cannot be used to address
Intel Architecture Software Developer’s Manual 32-605

Intel Confidential
Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology
memory. Addressing of MMX instruction operands in memory is handled by using the standard
Intel Architecture addressing modes and general-purpose registers (EAX, EBX, ECX, EDX, EBP,
ESI, EDI, and ESP).

Although the MMX registers are defined in the Intel Architecture as separate registers, they are
aliased to the registers in the FPU data register stack (R0 through R7). (See Chapter 10, MMX™
Technology System Programming Model, in the Intel Architecture Software Developer’s Manual,
Volume 3, for more a detailed discussion of the aliasing of MMX registers.)

32.1.2 MMX™ Data Types

The MMX technology defines the following new 64-bit data types (see Figure 32-2):

The bytes in the packed bytes data type are numbered 0 through 7, with byte 0 being contained in
the least significant bits of the data type (bits 0 through 7) and byte 7 being contained in the most
significant bits (bits 56 through 63). The words in the packed words data type are numbered 0
through 4, with word 0 being contained in the bits 0 through 15 of the data type and word 4 being
contained in bits 48 through 63. The doublewords in a packed doublewords data type are numbered
0 and 1, with doubleword 0 being contained in bits 0 through 31 and doubleword 1 being contained
in bits 32 through 63.

Figure 32-1. MMX™ Register Set

63 0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

3006044

Packed bytes Eight bytes packed into one 64-bit quantity.

Packed words Four (16-bit) words packed into one 64-bit quantity.

Packed doublewords Two (32-bit) doublewords packed into one 64-bit quantity.

Quadword One 64-bit quantity.
32-606 Intel Architecture Software Developer’s Manual
Intel Confidential

Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology

s, and

ing
X
d to 8
 This
ied out
yte,

of

ords,
The
 and

The MMX instructions move the packed data types (packed bytes, packed words, or packed
doublewords) and the quadword data type to-and-from memory or to-and-from the Intel
Architecture general-purpose registers in 64-bit blocks. However, when performing arithmetic or
logical operations on the packed data types, the MMX instructions operate in parallel on the
individual bytes, words, or doublewords contained in a 64-bit MMX register, as described in the
following section (“Single Instruction, Multiple Data (SIMD) Execution Model”).

When operating on the bytes, words, and doublewords within packed data types, the MMX
instructions recognize and operate on both signed and unsigned byte integers, word integer
doubleword integers.

32.1.3 Single Instruction, Multiple Data (SIMD) Execution Model

The MMX technology uses the single instruction, multiple data (SIMD) technique for perform
arithmetic and logical operations on the bytes, words, or doublewords packed into 64-bit MM
registers. For example, the PADDSB instruction adds 8 signed bytes from the source operan
signed bytes in the destination operand and stores 8 byte-results in the destination operand.
SIMD technique speeds up software performance by allowing the same operation to be carr
on multiple data elements in parallel. The MMX technology supports parallel operations on b
word, and doubleword data elements when contained in MMX registers.

The SIMD execution model supported in the MMX technology directly addresses the needs
modern media, communications, and graphics applications, which often use sophisticated
algorithms that perform the same operations on a large number of small data types (bytes, w
and doublewords). For example, most audio data is represented in 16-bit (word) quantities.
MMX instructions can operate on 4 of these words simultaneously with one instruction. Video
graphics information is commonly represented as palletized 8-bit (byte) quantities. Here, one
MMX instruction can operate on 8 of these bytes simultaneously.

Figure 32-2. MMX™ Data Types

3006002

63

Packed bytes (8x8 bits)

56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

63

Packed word (4x16 bits)

48 47 32 31 16 15 0

63

Packed doublewords (2x32 bits)

32 31 0

63

Quadword (64 bits)

0

Intel Architecture Software Developer’s Manual 32-607

Intel Confidential
Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology

d by
ta in
eats
32.1.4 Memory Data Formats

When stored in memory the bytes, words, and doublewords in the packed data types are stored in
consecutive addresses, with the least significant byte, word, or doubleword being stored in the at
the lowest address and the more significant bytes, words, or doubleword being stored at
consecutively higher addresses (see Figure 32-3). The ordering bytes, words, or doublewords in
memory is always little endian. That is, the bytes with the lower addresses are less significant than
the bytes with the higher addresses.

32.1.5 Data Formats for MMX™ Registers

Values in MMX registers have the same format as a 64-bit quantity in memory. MMX registers
have two data access modes: 64-bit access mode and 32-bit access mode.

The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between MMX registers,
all pack, logical and arithmetic instructions, and some unpack instructions.

The 32-bit access mode is used for 32-bit memory access, 32-bit transfer between integer registers
and MMX registers, and some unpack instructions.

32.2 MMX™ Instruction Set

The MMX instruction set consists of 57 instructions, grouped into the following categories:

• Data transfer instructions

• Arithmetic instructions

• Comparison instructions

• Conversion instructions

• Logical instructions

• Shift instructions

• Empty MMX™ state instruction (EMMS)

When operating on packed data within an MMX register, the data is cast by the type specifie
the instruction. For example, the PADDB (add packed bytes) instruction treats the packed da
an MMX register as 8 packed bytes; whereas, the PADDW (add packed words) instruction tr
the packed data as 4 packed words.

Figure 32-3. Eight Packed Bytes in Memory (at address 1000H)

3006045

63 0

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

56 55 48 47 40 39 32 31 24 23 16 15 8 7

Memory Address 1008h Memory Address 1000h
32-608 Intel Architecture Software Developer’s Manual
Intel Confidential

Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology
32.2.1 Saturation Arithmetic and Wraparound Mode

The MMX technology supports a new arithmetic capability known as saturating arithmetic.
Saturation is best defined by contrasting it with wraparound mode.

In wraparound mode, results that overflow or underflow are truncated and only the lower (least
significant) bits of the result are returned; that is, the carry is ignored.

In saturation mode, results of an operation that overflow or underflow are clipped (saturated) to a
data-range limit for the data type (see Table 32-1). The result of an operation that exceeds the range
of a data-type saturates to the maximum value of the range. A result that is less than the range of a
data type saturates to the minimum value of the range. This method of handling overflow and
underflow is useful in many applications, such as color calculations.

For example, when the result exceeds the data range limit for signed bytes, it is saturated to 7FH
(FFH for unsigned bytes). If a value is less than the data range limit, it is saturated to 80H for
signed bytes (00H for unsigned bytes).

Saturation provides a useful feature of avoiding wraparound artifacts. In the example of color
calculations, saturation causes a color to remain pure black or pure white without allowing for and
inversion.

MMX instructions do not indicate overflow or underflow occurrence by generating exceptions or
setting flags.

32.2.2 Instruction Operands

All MMX instructions, except the EMMS instruction, reference and operate on two operands: the
source and destination operands. The first operand is the destination and the second operand is the
source. The destination operand may also be a second source operand for the operation. The
instruction overwrites the destination operand with the result.

For example, a two-operand instruction would be decoded as:

DEST (first operand) ← DEST (first operand) OPERATION SRC (second operand)

The source operand for all the MMX instructions (except the data transfer instructions), can reside
either in memory or in an MMX register. The destination operand resides in an MMX register.

For data transfer instructions, the source and destination operands can also be an integer register
(for the MOVD instruction) or memory location (for both the MOVD and MOVQ instructions).

Table 32-1. Data Range Limits for Saturation

Data Type Lower Limit Upper Limit

Hexadecimal Decimal Hexadecimal Decimal

Signed Byte 80H -128 7FH 127

Signed Word 8000H -32,768 7FFFH 32,767

Unsigned Byte 00H 0 FFH 255

Unsigned Word 0000H 0 FFFFH 65,535
Intel Architecture Software Developer’s Manual 32-609

Intel Confidential
Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology
32.3 Overview of the MMX™ Instruction Set

Table 32-2 shows the instructions in the MMX instruction set. The following sections give a brief
overview of each group of instructions in the MMX instruction set and the instructions within each
group.

32.3.1 Data Transfer Instructions

The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory to MMX
registers and visa versa, or from integer registers to MMX registers and visa versa.

The MOVQ (Move 64 Bits) instruction transfers 64-bits of packed data from memory to MMX
registers and vise versa, or transfers data between MMX registers.

Table 32-2. MMX™ Instruction Set Summary (Sheet 1 of 2)

Category Wraparound Signed
Saturation

Unsigned
Saturation

Arithmetic

Addition

Subtraction

Multiplication

Multiply and Add

PADDB, PADDW,
PADDD

PSUBB, PSUBW,
PSUBD

PMULL, PMULH

PMADD

PADDSB,
PADDSW

PSUBSB,
PSUBSW

PADDUSB,
PADDUSW

PSUBUSB,
PSUBUSW

Comparison

Compare for Equal

Compare for
Greater Than

PCMPEQB,
PCMPEQW,
PCMPEQD

PCMPGTPB,
PCMPGTPW,
PCMPGTPD

Conversion

Pack

Unpack High

Unpack Low

PUNPCKHBW,
PUNPCKHWD,
PUNPCKHDQ

PUNPCKLBW,
PUNPCKLWD,
PUNPCKLDQ

PACKSSWB,
PACKSSDW PACKUSWB

Category Packed Full Quadword

Logical

And

And Not

Or

Exclusive OR

PAND

PANDN

POR

PXOR

Shift

Shift Left Logical

Shift Right Logical

Shift Right
Arithmetic

PSLLW, PSLLD

PSRLW, PSRLD

PSRAW, PSRAD

PSLLQ

PSRLQ
32-610 Intel Architecture Software Developer’s Manual
Intel Confidential

Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology
32.3.2 Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiplication, and multiply/add
operations on packed data types.

32.3.2.1 Packed Addition And Subtraction

The PADDSB, PADDSW, and PADDWD (packed add) and PSUBB, PSUBW, and PSUBD
(packed subtract) instructions add or subtract the signed or unsigned data elements of the source
operand to or from the destination operand in wrap- around mode. These instructions support
packed byte, packed word, and packed doubleword data types.

The PADDSB and PADDSW (packed add with saturation) and PSUBSB and PSUBSW (packed
subtract with saturation) instructions add or subtract the signed data elements of the source operand
to or from the signed data elements of the destination operand and saturate the result to the limits of
the signed data-type range. These instructions support packed byte and packed word data types.

The PADDUSB and PADDUSW (packed add unsigned with saturation) and PSUBUSB and
PSUBUSW (packed subtract unsigned with saturation) instructions add or subtract the unsigned
data elements of the source operand to or from the unsigned data elements of the destination
operand and saturate the result to the limits of the unsigned data-type range. These instructions
support packed byte and packed word data types.

32.3.2.2 Packed Multiplication

Packed multiplication instructions perform four multiplications on pairs of signed 16-bit operands,
producing 32-bit intermediate results. Users may choose the low-order or high-order parts of each
32-bit result.

The PMULHW (packed multiply high) and PMULLW (packed multiply low) instructions multiply
the signed words of the source and destination operands and write the high-order or low-order 16
bits of each of the results to the destination operand.

32.3.2.3 Packed Multiply Add

The PMADDWD (packed multiply and add) instruction calculates the products of the signed
words of the source and destination operands. The four intermediate 32-bit doubleword products
are summed in pairs to produce two 32-bit doubleword results.

Category Doubleword
Transfers

Quadword
Transfers

Data Transfer

Register to Register

Load from Memory

Store to Memory

MOVD

MOVD

MOVD

MOVQ

MOVQ

MOVQ

Empty
MMX™ State EMMS

Table 32-2. MMX™ Instruction Set Summary (Sheet 2 of 2)
Intel Architecture Software Developer’s Manual 32-611

Intel Confidential
Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology
32.3.3 Comparison Instructions

The PCMPEQB, PCMPEQW, and PCMPEQD (packed compare for equal) and PCMPGTB,
PCMPGTW, and PCMPGTD (packed compare for greater than) instructions compare the
corresponding data elements in the source and destination operands for equality or value greater
than, respectively. These instructions generate a mask of ones or zeros which are written to the
destination operand. Logical operations can use the mask to select elements. This can be used to
implement a packed conditional move operation without a branch or a set of branch instructions.
No flags are set.

These instructions support packed byte, packed word and packed doubleword data types.

32.3.4 Conversion Instructions

The conversion instructions convert the data elements within a packed data type.

The PACKSSWB and PACKSSDW (packed with signed saturation) instruction converts signed
words into signed bytes or signed doublewords into signed words, in signed saturation mode.

The PACKUSWB (packed with unsigned saturation) instruction converts signed words into
unsigned bytes, in unsigned saturation mode.

The PUNPCKHBW, PUNPCKHWD, and PUNPCKHDQ (unpack high packed data) and
PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ (unpack low packed data) instructions convert
bytes to words, words to doublewords, or doublewords to quadwords.

32.3.5 Logical Instructions

The PAND (bitwise logical AND), PANDN (bitwise logical AND NOT), POR (bitwise logical
OR), and PXOR (bitwise logical exclusive OR) instructions perform bitwise logical operations on
64-bit quantities.

32.3.6 Shift Instructions

The logical shift left, logical shift right and arithmetic shift right instructions shift each element by
a specified number of bits. The logical left and right shifts also enable a 64-bit quantity (quadword)
to be shifted as one block, assisting in data type conversions and alignment operations.

The PSLLW and PSLLD (packed shift left logical) and PSRLW and PSRLD (packed shift right
logical) instructions perform a logical left or right shift, and fill the empty high or low order bit
positions with zeros. These instructions support packed word, packed doubleword, and quadword
data types.

The PSRAW and PSRAD (packed shift right arithmetic) instruction performs an arithmetic right
shift, copying the sign bit into empty bit positions on the upper end of the operand. This instruction
supports packed word and packed doubleword data types.
32-612 Intel Architecture Software Developer’s Manual
Intel Confidential

Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology
32.3.7 EMMS (Empty MMX™ State) Instruction

The EMMS instruction empties the MMX state. This instruction must be used to clear the MMX
state (empty the floating-point tag word) at the end of an MMX routine before calling other
routines that can execute floating-point instructions.

32.4 Compatibility with FPU Architecture

The MMX state is aliased upon the Intel Architecture floating-point state. No new state or mode is
added to support the MMX technology. The same floating-point instructions that save and restore
the floating-point state also handle the MMX state (for example, during context switching).

MMX technology uses the same interface techniques between the floating-point architecture and
the operating system (primarily for task switching purposes). For more details, see Chapter 10,
MMX™ Technology System Programming Model, in the Intel Architecture Software Developer’s
Manual, Volume 3.

32.4.1 MMX™ Instructions and the Floating-Point Tag Word

After each MMX instruction, the entire floating-point tag word is set to Valid (00s). The Empty
MMX state (EMMS) instruction sets the entire floating-point tag word to Empty (11s).

Chapter 10, MMX™ Technology System Programming Model, in the Intel Architecture Software
Developer’s Manual, Volume 3, describes the effects of floating-point and MMX instructions on
the floating-point tag word. For details on floating-point tag word, see “FPU Tag Word”.

32.4.2 Effect of Instruction Prefixes on MMX™ Instructions

Table 32-3 details the effect of an instruction prefix on an MMX instruction.

See the section titled “Instruction Prefixes” in Chapter 2 of the Intel Architecture Software
Developer’s Manual, Volume 2, for detailed information on prefixes.

Table 32-3. Effect of Prefixes on MMX™ Instructions

Prefix Type Effect of Prefix

Address size (67H)
Affects MMX™ instructions with a memory operand.

Ignored by MMX instructions without a memory operand.

Operand size (66H) Ignored.

Segment override
Affects MMX instructions with a memory operand.

Ignored by MMX instructions without a memory operand.

Repeat Ignored.

Lock (F0H) Generates an invalid opcode exception.
Intel Architecture Software Developer’s Manual 32-613

Intel Confidential
Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology

ary/
32.5 WRITING APPLICATIONS WITH MMX™ CODE

The following sections give guidelines for writing applications code uses the MMX technology.

32.5.1 Detecting Support for MMX™ Technology Using the CPUID
Instruction

Use the CPUID instruction to determine whether the processor supports the MMX instruction set
(see the section titled “CPUID—CPU Identification” in Chapter 3 of the Intel Architecture
Software Developer’s Manual, Volume 2, for a detailed description of the CPUID instruction).
When the support for MMX technology is detected by the CPUID instruction, it is signaled by
setting bit 23 (MMX technology bit) in the feature flags to 1. In general, two versions of the routine
can be created: one with scalar instructions and one with MMX instructions. The application will
call the appropriate routine depending on the results of the CPUID instruction. If support for MMX
technology is detected, then the MMX routine is called; if no support for the MMX technology
exists, the application calls the scalar routine.

Note: The CPUID instruction will continue to report the existence of the MMX technology if the
CR0.EM bit is set (which signifies that the CPU is configured to generate exception interrupt 7 that
can be used to emulate floating point instructions). In this case, executing an MMX instruction
results in an invalid opcode exception.

Example 32-1 illustrates how to use the CPUID instruction. This example does not represent the
entire CPUID sequence, but shows the portion used for detection of MMX technology.

Example 32-1. Partial Routine for Detecting MMX™ Technology with the CPUID Instruction

... ; identify existence of CPUID instruction

...

... ; identify Intel processor

....

mov EAX, 1; request for feature flags

CPUID ; 0Fh, 0A2h CPUID instruction

testEDX, 00800000h; Is IA MMX technology bit (Bit 23 of EDX)

; in feature flags set?

jnz MMX_Technology_Found

32.5.2 Using the EMMS Instruction

When integrating an MMX routine into an application running under an existing operating system,
programmers need to take special precautions, similar to those when writing floating-point code.

When an MMX instruction executes, the floating-point tag word is marked valid (00s). Subsequent
floating-point instructions that will be executed may produce unexpected results because the
floating-point stack seems to contain valid data. The EMMS instruction marks the floating-point
tag word as empty. Therefore, it is imperative to use the EMMS instruction at the end of every
MMX routine, if the next routine may contain FPU code.

The EMMS instruction must be used in each of the following cases:

• When an application using the floating-point instructions calls an MMX™ technology libr
DLL. (Use the EMMS instruction at the end of the MMX code.)
32-614 Intel Architecture Software Developer’s Manual
Intel Confidential

Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology

d and
loads
N is

 API

X,

MX
uch
gh

X

ture

n be

ger
• When an application using MMX instructions calls a floating-point library/DLL. (Use the
EMMS instruction before calling the floating-point code.)

• When a switch is made between MMX code in a task/thread and other tasks/threads in
cooperative operating systems, unless it is certain that more MMX instructions will be
executed before any FPU code.

If the EMMS instruction is not used when trying to execute a floating-point instruction, the
following may occur:

• Depending on the exception mask bits of the floating-point control word, a floating- point
exception event may be generated.

• A “soft exception” may occur. In this case floating-point code continues to execute, but
generates incorrect results. This happens when the floating-point exceptions are maske
no visible exceptions occur. The internal exception handler (microcode, not user visible)
a NaN (Not a Number) with an exponent of 11..11B onto the floating-point stack. The Na
used for further calculations, yielding incorrect results.

• A potential error may occur only if the operating system does NOT manage floating-point
context across task switches. These operating systems are usually cooperative operating
systems. It is imperative that the EMMS instruction execute at the end of all the MMX™
routines that may enable a task switch immediately after they end execution (explicit yield
or implicit yield API).

32.5.3 Interfacing with MMX™ Code

The MMX technology enables direct access to all the MMX registers. This means that all existing
interface conventions that apply to the use of the processor’s general-purpose registers (EA
EBX, etc.) also apply to use of MMX register.

An efficient interface to MMX routines might pass parameters and return values through the M
registers or through a combination of memory locations (via the stack) and MMX registers. S
an interface would have to be written in assembly language since passing parameters throu
MMX registers is not currently supported by any existing C compilers. Do not use the EMMS
instruction when the interface to the MMX code has been defined to retain values in the MM
register.

If a high-level language, such as C, is used, the data types could be defined as a 64-bit struc
with packed data types.

When implementing usage of MMX instructions in high-level languages other approaches ca
taken, such as:

• Passing parameters to an MMX™ routine by passing a pointer to a structure via the inte
stack.

• Returning a value from a function by returning the pointer to a structure.

32.5.4 Writing Code with MMX™ and Floating-Point Instructions

The MMX technology aliases the MMX registers on the floating-point registers. The main reason
for this is to enable MMX technology to be fully compatible and transparent to existing software
environments (operating systems and applications). This way operating systems will be able to
include new applications and drivers that use the MMX technology.
Intel Architecture Software Developer’s Manual 32-615

Intel Confidential
Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology

™

of one
An application can contain both floating-point and MMX code. However, the user is discouraged
from causing frequent transitions between MMX and floating-point instructions by mixing MMX
code and floating-point code.

32.5.4.1 RECOMMENDATIONS AND GUIDELINES

Do not mix MMX code and floating-point code at the instruction level for the following reasons:

• The TOS (top of stack) value of the floating-point status word is set to 0 after each MMX
instruction. This means that the floating-point code loses its pointer to its floating-point
registers if the code mixes MMX instructions within a floating-point routine.

• An MMX instruction write to an MMX register writes ones (11s) to the exponent part of the
corresponding floating-point register.

• Floating-point code that uses register contents that were generated by the MMX instructions
may cause floating-point exceptions or incorrect results. These floating-point exceptions are
related to undefined floating-point values and floating-point stack usage.

• All MMX instructions (except EMMS) set the entire tag word to the valid state (00s in all tag
fields) without preserving the previous floating-point state.

• Frequent transitions between the MMX and floating-point instructions may result in
significant performance degradation in some implementations.

If the application contains floating-point and MMX instructions, follow these guidelines:

• Partition the MMX™ technology module and the floating-point module into separate
instruction streams (separate loops or subroutines) so that they contain only instructions
type.

• Do not rely on register contents across transitions.

• When the MMX state is not required, empty the MMX state using the EMMS instruction.

• Exit the floating-point code section with an empty stack.

Example 32-2. Floating-point (FP) and MMX™ Code

FP_code:

..

.. (*leave the FPU stack empty*)

MMX_code:

..

EMMS (*mark the FPU tag word as empty*)

FP_code 1:

..

.. (*leave the FPU stack empty*)

32.5.5 Using MMX™ Code in a Multitasking Operating System
Environment

An application needs to identify the nature of the multitasking operating system on which it runs.
Each task retains its own state which must be saved when a task switch occurs. The processor state
(context) consists of the general-purpose registers and the floating-point and MMX registers.
32-616 Intel Architecture Software Developer’s Manual
Intel Confidential

Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

Programming With the Intel MMX™ Technology

t
Operating systems can be classified into two types:

• Cooperative multitasking operating system.

• Preemptive multitasking operating system.

The behavior of the two operating-system types in context switching is described in “Contex
Switching” in Chapter 10 of the Intel Architecture Software Developer’s Manual, Volume 3.

32.5.5.1 COOPERATIVE MULTITASKING OPERATING SYSTEM

Cooperative multitasking operating systems do not save the FPU or MMX state when performing a
context switch. Therefore, the application needs to save the relevant state before relinquishing
direct or indirect control to the operating system.

32.5.5.2 PREEMPTIVE MULTITASKING OPERATING SYSTEM

Preemptive multitasking operating systems are responsible for saving and restoring the FPU and
MMX state when performing a context switch. Therefore, the application does not have to save or
restore the FPU and MMX state.

32.5.6 Exception Handling in MMX™ Code

MMX instructions generate the same type of memory-access exceptions as other Intel Architecture
instructions. Some examples are: page fault, segment not present, and limit violations. Existing
exception handlers can handle these types of exceptions. They do not have to be modified.

Unless there is a pending floating-point exception, MMX instructions do not generate numeric
exceptions. Therefore, there is no need to modify existing exception handlers or add new ones.

If a floating-point exception is pending, the subsequent MMX instruction generates a numeric error
exception (interrupt 16 and/or FERR#). The MMX instruction resumes execution upon return from
the exception handler.

32.5.7 Register Mapping

The MMX registers and their tags are mapped to physical locations of the floating-point registers
and their tags. Register aliasing and mapping is described in more detail in Chapter 10, MMX™
Technology System Programming Model, in the Intel Architecture Software Developer’s Manual,
Volume 3.
Intel Architecture Software Developer’s Manual 32-617

Intel Confidential
Modified on: 12/8/98, D:\Hyperbook\Pentium\SW Manual\mmxprog.fm

	Programming With the Intel MMX™ Technology 32
	32.1 Overview of the MMX™ Technology Programming Environment
	32.1.1 MMX™ Registers
	Figure 32�1. MMX™ Register Set

	32.1.2 MMX™ Data Types
	Figure 32�2. MMX™ Data Types

	32.1.3 Single Instruction, Multiple Data (SIMD) Execution Model
	32.1.4 Memory Data Formats
	Figure 32�3. Eight Packed Bytes in Memory (at address 1000H)

	32.1.5 Data Formats for MMX™ Registers

	32.2 MMX™ Instruction Set
	32.2.1 Saturation Arithmetic and Wraparound Mode
	Table 32�1. Data Range Limits for Saturation

	32.2.2 Instruction Operands

	32.3 Overview of the MMX™ Instruction Set
	32.3.1 Data Transfer Instructions
	Table 32�2. MMX™ Instruction Set Summary (Sheet 1 of 2)

	32.3.2 Arithmetic Instructions
	32.3.2.1 Packed Addition And Subtraction
	32.3.2.2 Packed Multiplication
	32.3.2.3 Packed Multiply Add

	32.3.3 Comparison Instructions
	32.3.4 Conversion Instructions
	32.3.5 Logical Instructions
	32.3.6 Shift Instructions
	32.3.7 EMMS (Empty MMX™ State) Instruction

	32.4 Compatibility with FPU Architecture
	32.4.1 MMX™ Instructions and the Floating-Point Tag Word
	32.4.2 Effect of Instruction Prefixes on MMX™ Instructions
	Table 32�3. Effect of Prefixes on MMX™ Instructions

	32.5 WRITING APPLICATIONS WITH MMX™ CODE
	32.5.1 Detecting Support for MMX™ Technology Using the CPUID Instruction
	32.5.2 Using the EMMS Instruction
	32.5.3 Interfacing with MMX™ Code
	32.5.4 Writing Code with MMX™ and Floating-Point Instructions
	32.5.4.1 RECOMMENDATIONS AND GUIDELINES

	32.5.5 Using MMX™ Code in a Multitasking Operating System Environment
	32.5.5.1 COOPERATIVE MULTITASKING OPERATING SYSTEM
	32.5.5.2 PREEMPTIVE MULTITASKING OPERATING SYSTEM

	32.5.6 Exception Handling in MMX™ Code
	32.5.7 Register Mapping

